找回密码
 立即注册
查看: 522|回复: 1

目前为止有什么斗劲新的模型优化算法?

[复制链接]
发表于 2023-5-24 20:43 | 显示全部楼层 |阅读模式
目前为止有什么斗劲新的模型优化算法?
发表于 2023-5-24 20:44 | 显示全部楼层
在深度学习领域,模型优化算法是一个不断进化和改进的领域,下面是几种比较新的模型优化算法:


1. Adaptive Gradient Methods: 自适应梯度方法(Adagrad、Adadelta、RMSprop等),这些算法通过自适应地调整梯度下降步长来优化模型,适用于非稀疏的大规模模型。
2. Adam Algorithm: Adam算法(Adaptive Moments Estimation)是一种基于梯度的优化算法,使用自适应学习率来调整梯度下降步长和动量,适用于大规模非线性和凸优化问题。


3. Linear Algebraic Optimization: 线性代数优化,如SVD和谱聚类,能够更好地处理大规模、高维数据的特征提取和降维问题。

4. Graph-based Optimization: 基于图的优化算法,如Graph Convolutional Network和Graph Attention Network。这些算法使用图结构中的节点和边来优化模型,适用于具有复杂结构的数据。

需要注意的是,新的模型优化算法不一定适用于所有的问题,需要针对具体的任务和数据集进行选择。同时,新的算法需要在各种情况下进行充分的测试和验证,才能确定其有效性和可靠性。

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
懒得打字嘛,点击右侧快捷回复 【右侧内容,后台自定义】
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Unity开发者联盟 ( 粤ICP备20003399号 )

GMT+8, 2025-1-22 23:04 , Processed in 0.102869 second(s), 28 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表