找回密码
 立即注册
查看: 287|回复: 0

时变网络下的分布式优化算法

[复制链接]
发表于 2022-7-22 09:45 | 显示全部楼层 |阅读模式
DIGing(时变无向图)

参考文献:Nedic, Angelia & Olshevsky, Alex & Shi, Wei. (2016). Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs. SIAM Journal on Optimization.
假设:时变无向图;一致联合连通;双随机矩阵。
紧凑形式:

其中, 是一个双随机矩阵,  是一个固定步长。
非紧凑形式:

PANDA(时变无向图)

参考文献:M. Maros and J. Jaldén, "PANDA: A Dual Linearly Converging Method for Distributed Optimization Over Time-Varying Undirected Graphs," 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 6520-6525.
假设:时变无向图;一致联合连通;双随机矩阵。
紧凑形式:

非紧凑形式:

Accelerated Gradient Tracking (时变无向图)

参考文献:Li, Huan & Lin, Zhouchen. (2021). Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization.
假设:时变无向图;一致联合连通;双随机矩阵。

TV-AB(时变有向图)

参考文献:F. Saadatniaki, R. Xin and U. A. Khan, "Decentralized Optimization Over Time-Varying Directed Graphs With Row and Column-Stochastic Matrices," in IEEE Transactions on Automatic Control, 2020, vol. 65, no. 11, pp. 4769-4780.
假设:时变有向图;一致联合强连通;行和列随机矩阵。
紧凑形式:

其中, 分别是行随机矩阵和列随机矩阵。
非紧凑形式:

Push-Sum based(时变有向图)

参考文献:A. Nedi and A. Olshevsky, "Distributed Optimization Over Time-Varying Directed Graphs," in IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601-615, March 2015.
假设:时变有向图;一致联合强连通;列随机矩阵。

其中,前两项的权重系数满足列随机; 是函数 处的次梯度。
Push-DIGing (时变有向图)

参考资料:Nedic, Angelia & Olshevsky, Alex & Shi, Wei. (2016). Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs. SIAM Journal on Optimization. 27.
假设:时变有向图;一致联合强连通;列随机矩阵。
其中, 满足列随机;  是一个固定步长;
懒得打字嘛,点击右侧快捷回复 【右侧内容,后台自定义】
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Unity开发者联盟 ( 粤ICP备20003399号 )

GMT+8, 2024-11-15 12:50 , Processed in 0.114139 second(s), 26 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表