找回密码
 立即注册
查看: 371|回复: 0

使用Matlab进行深度学习 轴承故障诊断(总)

[复制链接]
发表于 2022-4-7 08:45 | 显示全部楼层 |阅读模式
这是轴承诊断的最后一篇,近期不会再在该方向进行更新了。在之前的两篇文章中,主要讲述了CNN进行轴承故障诊断,二者的区别在于 1. 图像生成不同 2. 卷积网络不同。
在本文中,将使用九种方法进行故障诊断。分别为:CNN, SVM, BP网络, SAE, DELM, 优化的DELM(遗传算法,粒子群算法,麻雀搜索算法), ELM, KELM, 自己优化的算法【暂不公开】。
对于轴承故障诊断的基本介绍在之前的文章,所以不再赘述。
本文联合对比多种方法,并且有一定的创新优化。
一、数据集

本文采取的数据集依然是 CWRU数据集,凯斯西储大学。或者采用本文整理的数据集,经过整理之后的格式如下


在本次实验中,不仅使用了轴承数据,对于其他分类任务数据集也进行了实验,如Iris数据集,读者可以再其他数据集进行试验。
二、多方法对比


  • SVM
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)
实验结果:







2. BP算法






3. 优化的DELM,主要采用麻雀算法,粒子群算法,遗传算法优化








4. 多种优化算法



本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?立即注册

×
懒得打字嘛,点击右侧快捷回复 【右侧内容,后台自定义】
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

小黑屋|手机版|Unity开发者联盟 ( 粤ICP备20003399号 )

GMT+8, 2024-11-17 01:32 , Processed in 0.091546 second(s), 26 queries .

Powered by Discuz! X3.5 Licensed

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表