通俗易懂的讲解机器学习\深度学习中一些常用的优化算法,梯度下降法、动量法momentum、Adagrad、RMSProp、Adadelta、Adam,介绍不同算法之间的关联和优缺点,后续会继续分享其他的算法,感兴趣的可以关注一下。
梯度下降使用整个训练数据集来计算梯度,因此它有时也被称为批量梯度下降
结语:本人是一个学习者,本文主要参考李沐的《动手学深度学习》,概括性的总结了一下,文末附上了课程链接,如果想详细了解的可以看一下。后期我会定期分享一些机器学习、优化算法、计算机视觉、强化学习等方面的知识,也会分享一些开发中的总结和经验,如果感兴趣的可以关注一下,学习。
您需要 登录 才可以下载或查看,没有账号?立即注册
使用道具 举报
本版积分规则 发表回复 回帖并转播 回帖后跳转到最后一页
小黑屋|手机版|Unity开发者联盟 ( 粤ICP备20003399号 )
GMT+8, 2024-11-15 08:47 , Processed in 0.189229 second(s), 26 queries .
Powered by Discuz! X3.5 Licensed
© 2001-2024 Discuz! Team.