|
DIGing(时变无向图)
参考文献:Nedic, Angelia & Olshevsky, Alex & Shi, Wei. (2016). Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs. SIAM Journal on Optimization.
假设:时变无向图;一致联合连通;双随机矩阵。
紧凑形式:
其中, 是一个双随机矩阵, 是一个固定步长。
非紧凑形式:
PANDA(时变无向图)
参考文献:M. Maros and J. Jaldén, "PANDA: A Dual Linearly Converging Method for Distributed Optimization Over Time-Varying Undirected Graphs," 2018 IEEE Conference on Decision and Control (CDC), 2018, pp. 6520-6525.
假设:时变无向图;一致联合连通;双随机矩阵。
紧凑形式:
非紧凑形式:
Accelerated Gradient Tracking (时变无向图)
参考文献:Li, Huan & Lin, Zhouchen. (2021). Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization.
假设:时变无向图;一致联合连通;双随机矩阵。
TV-AB(时变有向图)
参考文献:F. Saadatniaki, R. Xin and U. A. Khan, "Decentralized Optimization Over Time-Varying Directed Graphs With Row and Column-Stochastic Matrices," in IEEE Transactions on Automatic Control, 2020, vol. 65, no. 11, pp. 4769-4780.
假设:时变有向图;一致联合强连通;行和列随机矩阵。
紧凑形式:
其中, 和 分别是行随机矩阵和列随机矩阵。
非紧凑形式:
Push-Sum based(时变有向图)
参考文献:A. Nedi and A. Olshevsky, "Distributed Optimization Over Time-Varying Directed Graphs," in IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601-615, March 2015.
假设:时变有向图;一致联合强连通;列随机矩阵。
其中,前两项的权重系数满足列随机; ; 是函数 在 处的次梯度。
Push-DIGing (时变有向图)
参考资料:Nedic, Angelia & Olshevsky, Alex & Shi, Wei. (2016). Achieving Geometric Convergence for Distributed Optimization Over Time-Varying Graphs. SIAM Journal on Optimization. 27.
假设:时变有向图;一致联合强连通;列随机矩阵。
其中, 满足列随机; 是一个固定步长; 。 |
|