【Unity源码学习】遮罩:Mask与Mask2D
MaskUGUI的裁切分为Mask和Mask2D两种
我们先来看Mask。它可以给Mask指定一张裁切图裁切子元素。我们给Mask指定了一张圆形图片,那么子节点下的元素都会被裁切在这个圆形区域中。
Mask的原理就是利用了StencilBuffer(模板缓冲),它里面记录了一个ID,被裁切元素也有StencilBuffer(模板缓冲)的ID,并且和Mask里的比较,相同才会被渲染。
StencilBuffer
看起来好像挺简单的,那么背后的功臣——StencilBuffer,究竟是何方神圣呢?
简单来说,gpu为每个像素点分配一个称之为stencil buffer的1字节大小的内存区域,这个区域可以用于保存或丢弃像素的目的。我们举个简单的例子来说明这个缓冲区的本质。
如上图所示,我们的场景中有1个红色图片和1个绿色图片,黑框范围内是它们重叠部分。一帧渲染开始,首先绿色图片将它覆盖范围的每个像素颜色“画”在屏幕上,然后红色图片也将自己的颜色画在屏幕上,就是图中的效果了。
这种情况下,重叠区域内红色完全覆盖了绿色。接下来,我们为绿色图片添加Mask组件。于是变成了这样:
此时一帧渲染开始,首先绿色图片将它覆盖范围都涂上绿色,同时将每个像素的stencil buffer值设置为1,此时屏幕的stencil buffer分布如下:
然后轮到红色图片“绘画”,它在涂上红色前,会先取出这个点的stencil buffer值判断,在黑框范围内,这个值是1,于是继续画红色;在黑框范围外,这个值是0,于是不再画红色,最终达到了图中的效果。
所以从本质上来讲,stencil buffer是为了实现多个“绘画者”之间互相通信而存在的。由于gpu是流水线作业,它们之间无法直接通信,所以通过这种共享数据区的方式来传递消息,从而达到一些“不可告人”的目的。
unity shader
理解了stencil的原理,我们再来看下它的语法。在unity shader中定义的语法格式如下
(中括号内是可以修改的值,其余都是关键字):
Stencil
{
Ref //Ref表示要比较的值;0-255
Comp //Comp表示比较方法(等于/不等于/大于/小于等);
Pass //Pass/Fail表示当比较通过/不通过时对stencil buffer做什么操作
//(保留Keep/替换Replace/置0 Zero/增加IncrementSaturate/减少DecrementSaturate等);
ReadMask //ReadMask/WriteMask表示取stencil buffer的值时用的mask(即可以忽略某些位);
WriteMask
}翻译一下就是:将stencil buffer的值与ReadMask与运算,然后与Ref值进行Comp比较,结果为true时进行Pass操作,否则进行Fail操作,操作值写入stencil buffer前先与WriteMask与运算。
UI/Default
最后,我们来看下Unity渲染UI组件时默认使用的Shader——UI/Default(略去了一些不相关内容):
Shader "UI/Default"
{
Properties
{
_MainTex ("Sprite Texture", 2D) = "white" {}
_Color ("Tint", Color) = (1,1,1,1)
_StencilComp ("Stencil Comparison", Float) = 8
_Stencil ("Stencil ID", Float) = 0
_StencilOp ("Stencil Operation", Float) = 0
_StencilWriteMask ("Stencil Write Mask", Float) = 255
_StencilReadMask ("Stencil Read Mask", Float) = 255
_ColorMask ("Color Mask", Float) = 15
_UseUIAlphaClip ("Use Alpha Clip", Float) = 0
}
···
}以及我们代码中调用的StencilMaterial.Add的内部实现
StencilMaterial.cs
public static Material Add(Material baseMat, int stencilID, StencilOp operation, CompareFunction compareFunction, ColorWriteMask colorWriteMask, int readMask, int writeMask)
{
···省略
var newEnt = new MatEntry();
newEnt.count = 1;
newEnt.baseMat = baseMat;
newEnt.customMat = new Material(baseMat);
newEnt.customMat.hideFlags = HideFlags.HideAndDontSave;
newEnt.stencilId = stencilID;
newEnt.operation = operation;
newEnt.compareFunction = compareFunction;
newEnt.readMask = readMask;
newEnt.writeMask = writeMask;
newEnt.colorMask = colorWriteMask;
newEnt.useAlphaClip = operation != StencilOp.Keep && writeMask > 0;
newEnt.customMat.name = string.Format("Stencil Id:{0}, Op:{1}, Comp:{2}, WriteMask:{3}, ReadMask:{4}, ColorMask:{5} AlphaClip:{6} ({7})", stencilID, operation, compareFunction, writeMask, readMask, colorWriteMask, newEnt.useAlphaClip, baseMat.name);
newEnt.customMat.SetInt("_Stencil", stencilID);
newEnt.customMat.SetInt("_StencilOp", (int)operation);
newEnt.customMat.SetInt("_StencilComp", (int)compareFunction);
newEnt.customMat.SetInt("_StencilReadMask", readMask);
newEnt.customMat.SetInt("_StencilWriteMask", writeMask);
newEnt.customMat.SetInt("_ColorMask", (int)colorWriteMask);
// left for backwards compatability
if (newEnt.customMat.HasProperty("_UseAlphaClip"))
newEnt.customMat.SetInt("_UseAlphaClip", newEnt.useAlphaClip ? 1 : 0);
if (newEnt.useAlphaClip)
newEnt.customMat.EnableKeyword("UNITY_UI_ALPHACLIP");
else
newEnt.customMat.DisableKeyword("UNITY_UI_ALPHACLIP");
m_List.Add(newEnt);
return newEnt.customMat;
}了解了stencil 我们来看mask的源码实现
由于裁切需要同时裁切图片和文本,所以Image和Text都会派生自MaskableGraphic。
如果要让Mask节点下的元素裁切,那么它需要占一个DrawCall,因为这些元素需要一个新的Shader参数来渲染。
如下代码所示,MaskableGraphic实现了IMaterialModifier接口, 而StencilMaterial.Add()就是设置Shader中的裁切参数。
MaskableGraphic.cs
public virtual Material GetModifiedMaterial(Material baseMaterial)
{
var toUse = baseMaterial;
if (m_ShouldRecalculateStencil)
{
var rootCanvas = MaskUtilities.FindRootSortOverrideCanvas(transform);
//获取模板缓冲值
m_StencilValue = maskable ? MaskUtilities.GetStencilDepth(transform, rootCanvas) : 0;
m_ShouldRecalculateStencil = false;
}
// if we have a enabled Mask component then it will
// generate the mask material. This is an optimisation
// it adds some coupling between components though :(
Mask maskComponent = GetComponent<Mask>();
if (m_StencilValue > 0 && (maskComponent == null || !maskComponent.IsActive()))
{
//设置模板缓冲值,并且设置在该区域内的显示,不在的裁切掉
var maskMat = StencilMaterial.Add(toUse,// Material baseMat
(1 << m_StencilValue) - 1, // 参考值
StencilOp.Keep, // 不修改模板缓存
CompareFunction.Equal,// 相等通过测试
ColorWriteMask.All, // ColorMask
(1 << m_StencilValue) - 1,// Readmask
0);//WriteMas
StencilMaterial.Remove(m_MaskMaterial);
//并且更换新的材质
m_MaskMaterial = maskMat;
toUse = m_MaskMaterial;
}
return toUse;
}Image对象在进行Rebuild()时,UpdateMaterial()方法中会获取需要渲染的材质,并且判断当前对象的组件是否有继承IMaterialModifier接口,如果有那么它就是绑定了Mask脚本,接着调用上面提到的GetModifiedMaterial方法修改材质上Shader的参数。
Image.cs
public virtual void Rebuild(CanvasUpdate update)
{
if (canvasRenderer.cull)
return;
switch (update)
{
case CanvasUpdate.PreRender:
if (m_VertsDirty)
{
//开始更新网格
UpdateGeometry();
m_VertsDirty = false;
}
if (m_MaterialDirty)
{
//开始更新材质
UpdateMaterial();
m_MaterialDirty = false;
}
break;
}
}
public virtual Material materialForRendering
{
get
{
//遍历UI中的每个Mask组件
var components = ListPool<Component>.Get();
GetComponents(typeof(IMaterialModifier), components);
//并且更新每个Mask组件的模板缓冲材质
var currentMat = material;
for (var i = 0; i < components.Count; i++)
currentMat = (components as IMaterialModifier).GetModifiedMaterial(currentMat);
ListPool<Component>.Release(components);
//返回新的材质,用于裁切
return currentMat;
}
}
protected virtual void UpdateMaterial()
{
if (!IsActive())
return;
//更新刚刚替换的新的模板缓冲的材质
canvasRenderer.materialCount = 1;
canvasRenderer.SetMaterial(materialForRendering, 0);
canvasRenderer.SetTexture(mainTexture);
}因为模板缓冲可以提供模板的区域,也就是前面设置的圆形图片,所以最终会将元素裁切到这个圆心图片中。
Mask.GetModifiedMaterial
Mask.cs
/// Stencil calculation time!
public virtual Material GetModifiedMaterial(Material baseMaterial)
{
if (!MaskEnabled())
return baseMaterial;
var rootSortCanvas = MaskUtilities.FindRootSortOverrideCanvas(transform);
var stencilDepth = MaskUtilities.GetStencilDepth(transform, rootSortCanvas);
// stencil只支持最大深度为8的遮罩
if (stencilDepth >= 8)
{
Debug.LogError(&#34;Attempting to use a stencil mask with depth > 8&#34;, gameObject);
return baseMaterial;
}
int desiredStencilBit = 1 << stencilDepth;
// if we are at the first level...
// we want to destroy what is there
if (desiredStencilBit == 1)
{
var maskMaterial = StencilMaterial.Add(baseMaterial, 1, StencilOp.Replace, CompareFunction.Always, m_ShowMaskGraphic ? ColorWriteMask.All : 0);
StencilMaterial.Remove(m_MaskMaterial);
m_MaskMaterial = maskMaterial;
var unmaskMaterial = StencilMaterial.Add(baseMaterial, 1, StencilOp.Zero, CompareFunction.Always, 0);
StencilMaterial.Remove(m_UnmaskMaterial);
m_UnmaskMaterial = unmaskMaterial;
graphic.canvasRenderer.popMaterialCount = 1;
graphic.canvasRenderer.SetPopMaterial(m_UnmaskMaterial, 0);
return m_MaskMaterial;
}
//otherwise we need to be a bit smarter and set some read / write masks
var maskMaterial2 = StencilMaterial.Add(baseMaterial, desiredStencilBit | (desiredStencilBit - 1), StencilOp.Replace, CompareFunction.Equal, m_ShowMaskGraphic ? ColorWriteMask.All : 0, desiredStencilBit - 1, desiredStencilBit | (desiredStencilBit - 1));
StencilMaterial.Remove(m_MaskMaterial);
m_MaskMaterial = maskMaterial2;
graphic.canvasRenderer.hasPopInstruction = true;
var unmaskMaterial2 = StencilMaterial.Add(baseMaterial, desiredStencilBit - 1, StencilOp.Replace, CompareFunction.Equal, 0, desiredStencilBit - 1, desiredStencilBit | (desiredStencilBit - 1));
StencilMaterial.Remove(m_UnmaskMaterial);
m_UnmaskMaterial = unmaskMaterial2;
graphic.canvasRenderer.popMaterialCount = 1;
graphic.canvasRenderer.SetPopMaterial(m_UnmaskMaterial, 0);
return m_MaskMaterial;
}
Mask 组件调用了模板材质球构建了一个自己的材质球,因此它使用了实时渲染中的模板方法来裁切不需要显示的部分,所有在 Mask 组件后面的物体都会进行裁切。
我们可以说 Mask 是在 GPU 中做的裁切,使用的方法是着色器中的模板方法。
Mask2D
接着我们再来看看Mask2D的原理,在前面介绍Canvas.willRenderCanvases()时在PerformUpdate方法中会调用ClipperRegistry.instance.Cull();来处理界面中所有的Mask2D裁切。
CanvasUpdateRegistry.cs
protected CanvasUpdateRegistry()
{
Canvas.willRenderCanvases += PerformUpdate;
}
private void PerformUpdate()
{
//...略
// 开始裁切Mask2D
ClipperRegistry.instance.Cull();
//...略
}
ClipperRegistry.cs
public void Cull()
{
for (var i = 0; i < m_Clippers.Count; ++i)
{
m_Clippers.PerformClipping();
}
}Mask2D会在OnEnable()方法中,将当前组件注册ClipperRegistry.Register(this);
这样在上面ClipperRegistry.instance.Cull();方法时就可以遍历所有Mask2D组件并且调用它们的PerformClipping()方法了。
PerformClipping()方法,需要找到所有需要裁切的UI元素,因为Image和Text都继承了IClippable接口,最终将调用Cull()进行裁切。
RectMask2D.cs
protected override void OnEnable()
{
//注册当前RectMask2D裁切对象,保证下次Rebuild时可进行裁切。
base.OnEnable();
m_ShouldRecalculateClipRects = true;
ClipperRegistry.Register(this);
MaskUtilities.Notify2DMaskStateChanged(this);
}
public virtual void PerformClipping()
{
//TODO See if an IsActive() test would work well here or whether it might cause unexpected side effects (re case 776771)
// if the parents are changed
// or something similar we
// do a recalculate here
//重新计算裁切区域
if (m_ShouldRecalculateClipRects)
{
MaskUtilities.GetRectMasksForClip(this, m_Clippers);
m_ShouldRecalculateClipRects = false;
}
// get the compound rects from
// the clippers that are valid
bool validRect = true;
Rect clipRect = Clipping.FindCullAndClipWorldRect(m_Clippers, out validRect);
bool clipRectChanged = clipRect != m_LastClipRectCanvasSpace;
if (clipRectChanged || m_ForceClip)
{
foreach (IClippable clipTarget in m_ClipTargets)
//把裁切区域传到每个UI元素的Shader中[划重点!!!]
clipTarget.SetClipRect(clipRect, validRect);
m_LastClipRectCanvasSpace = clipRect;
m_LastValidClipRect = validRect;
}
foreach (IClippable clipTarget in m_ClipTargets)
{
var maskable = clipTarget as MaskableGraphic;
if (maskable != null && !maskable.canvasRenderer.hasMoved && !clipRectChanged)
continue;
clipTarget.Cull(m_LastClipRectCanvasSpace, m_LastValidClipRect);
}
}
MaskableGraphic.cs
public virtual void Cull(Rect clipRect, bool validRect)
{
var cull = !validRect || !clipRect.Overlaps(rootCanvasRect, true);
UpdateCull(cull);
}
private void UpdateCull(bool cull)
{
var cullingChanged = canvasRenderer.cull != cull;
canvasRenderer.cull = cull;
if (cullingChanged)
{
UISystemProfilerApi.AddMarker(&#34;MaskableGraphic.cullingChanged&#34;, this);
m_OnCullStateChanged.Invoke(cull);
SetVerticesDirty();
}
}RectMask2D会将RectTransform的区域作为_ClipRect传入Shader中。
Stencil Ref 的值是0 表示它并没有使用模板缓冲比较,
如果只是矩形裁切,RectMask2D不需要一个无效的渲染用于模板比较,所以RectMask2D的效率会比Mask要高。
在Shader的Frag处理像素中,被裁切掉的区域是通过UnityGet2DClipping()根据_ClipRect比较当前像素是否在裁切区域中,如果不在,将Color.a变成了透明。
Shader &#34;UI/Default&#34;
{
//...略
fixed4 frag(v2f IN) : SV_Target
{
half4 color = (tex2D(_MainTex, IN.texcoord) + _TextureSampleAdd) * IN.color;
//根据_ClipRect比较当前像素是否在裁切区域中,如果不在颜色将设置成透明
#ifdef UNITY_UI_CLIP_RECT
color.a *= UnityGet2DClipping(IN.worldPosition.xy, _ClipRect);
#endif
#ifdef UNITY_UI_ALPHACLIP
clip (color.a - 0.001);
#endif
return color;
}
}参考
Unity mask的分析与理解
页:
[1]