优化算法 - RMSProp算法
RMSProp算法1 - 算法
import math
import torch
from d2l import torch as d2l
d2l.set_figsize()
gammas =
for gamma in gammas:
x = torch.arange(40).detach().numpy()
d2l.plt.plot(x,(1 - gamma) * gamma ** x,label=f'gamma = {gamma:.2f}')
d2l.plt.xlabel('time')
Text(0.5, 0, 'time')
2 - 从零开始实现
和之前一样,我们使用二次函数$f(x)=0.1x_1^2+2x_2^2$来不雅察看RMSProp算法的轨迹。回想在11.7节中,当我们使用学习率为0.4的Adagrad算法时,变量在算法的后期阶段移动非常迟缓,因为学习率衰减太快。RMSProp算法中不会发生这种情况,因为η时单独控制的
def rmsprop_2d(x1,x2,s1,s2):
g1,g2,eps = 0.2 * x1,4 * x2,1e-6
s1 = gamma * s1 + (1 - gamma) * g1 ** 2
s2 = gamma * s2 + (1 - gamma) * g2 ** 2
x1 -= eta / math.sqrt(s1 + eps) * g1
x2 -= eta / math.sqrt(s2 + eps) * g2
return x1,x2,s1,s2
def f_2d(x1,x2):
return 0.1 * x1 **2 + 2 * x2 ** 2
eta,gamma = 0.4,0.9
d2l.show_trace_2d(f_2d,d2l.train_2d(rmsprop_2d))
epoch 20, x1: -0.010599, x2: 0.000000
C:\Users\20919\anaconda3\envs\d2l\lib\site-packages\torch\functional.py:478: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally atC:\actions-runner\_work\pytorch\pytorch\builder\windows\pytorch\aten\src\ATen\native\TensorShape.cpp:2895.)
return _VF.meshgrid(tensors, **kwargs)# type: ignore
接下来,我们在深度网络中实现RMSProp算法
def init_rmsprop_states(feature_dim):
s_w = torch.zeros((feature_dim,1))
s_b = torch.zeros(1)
return (s_w,s_b)
def rmsprop(params,states,hyperparams):
gamma,eps = hyperparams['gamma'],1e-6
for p,s in zip(params,states):
with torch.no_grad():
s[:] = gamma * s + (1 - gamma) * torch.square(p.grad)
p[:] -= hyperparams['lr'] * p.grad / torch.sqrt(s + eps)
p.grad.data.zero_()我们将初始学习率设置为0.01,加权γ设置为0.9.也就是说,s累加了过去的$\frac{1}{1-\gamma}=10$次平方梯度不雅观测值的平均值
data_iter,feature_dim = d2l.get_data_ch11(batch_size=10)
d2l.train_ch11(rmsprop,init_rmsprop_states(feature_dim),
{'lr':0.01,'gamma':0.9},data_iter,feature_dim);
loss: 0.245, 0.005 sec/epoch
3 - 简洁实现
我们可直接使用深度学习框架中提供的RMSProp算法来训练模型
trainer = torch.optim.RMSprop
d2l.train_concise_ch11(trainer,{'lr':0.01,'alpha':0.9},data_iter)
loss: 0.243, 0.005 sec/epoch
4 - 小结
[*]RMSProp算法与Adgrad算法非常相似,因为两者都使用梯度的平方缩放系数
[*]RMSProp算法与动量法度使用泄露平均值。但是RMSProp算法使用该技术来调整系数挨次的预措置
[*]在尝试中,学习率需要尝试者调剂
[*]系数γ决定了在调整每坐标比例时历史记录的时长
页:
[1]