二维点数据kmeans算法聚类C++实现(可直接运行)
转载自Wa_o_Fi#include<iostream>#include<vector>#include<math.h>#define k 2//聚类数,可在kmeans算法处作参数usingnamespace std;struct Tuple//数据结构{float attr1;//可看作xfloat attr2;//可看作y};floatDist(Tuple t1,Tuple t2)//欧式距离{returnsqrt((t1.attr1 - t2.attr1)*(t1.attr1 - t2.attr1)+(t1.attr2 - t2.attr2)*(t1.attr2 - t2.attr2));}//决定该样本属于哪一个聚类,传入的是聚类的质心(也是一个组,看作x,y)和一个样本,返回的是label;intclusterofTuple(Tuple means[],Tuple tuple){float distance =Dist(means,tuple);int label =0;for(int i =0; i < k; i++){if(Dist(means,tuple)<distance){
label = i;}}return label;//找最近质心}//获得蔟集的平方误差,用来判断是否还需要继续迭代,传入的是蔟集的质心,以及所有归类好的样本,装着每个蔟集的容器数组,计算该聚类到自己质心的距离,所有距离的加和,返回所有的平方误差floatgetVar(Tuple means[],vector<Tuple> cluster[]){float var =0;for(int i =0; i < k; i++){
vector<Tuple> t = cluster;for(int j =0; j < t.size(); j++){
var +=Dist(means, t);}}return var;}floatads(float oldvar,float newvar){//计算平方差变化float p;
p=newvar-oldvar;return p;}//计算当前蔟集的质心,输入的是一个蔟集的容器,质心的计算就是对于两个属性累加后除以个数求平均,然后返回质心,所以也要初始化一个质心Tuple t
Tuple getMeans(vector<Tuple> cluster){
Tuple t;int num = cluster.size();float meanX =0, meanY =0;for(int i =0; i < num; i++){
meanX += cluster.attr1;
meanY += cluster.attr2;}
t.attr1 = meanX / num;
t.attr2 = meanY / num;return t;}voidKmeans(vector<Tuple> tuples)//kmeans算法{//定义与初始化//首先是要定义一个放置分好的蔟,那就是容器组咯,一个容器放一个蔟//然后还要有放k个质心的数组
vector<Tuple> cluster;//容器组
Tuple means;//放k个质心的数组//首先设置默认的质心,就是每个组分别是所有tuples里面最前面三个;for(int i =0; i < k; i++){
means.attr1 = tuples.attr1;
means.attr2 = tuples.attr2;}//第一次计算距离,进行分类,得到第一次的类标,容器的话是直接用push_back放置进去int label =0;for(int i =0; i < tuples.size(); i++){
label =clusterofTuple(means, tuples);
cluster.push_back(tuples);}//输出刚开始的蔟for(int i =0; i < k; i++){
cout <<"the num of "<< i << endl;
vector<Tuple> t = cluster;for(int j =0; j<t.size(); j++){
cout << t.attr1 <<" "<< t.attr2 <<" "<< endl;}}float oldvar =0;//上一轮平方差float newvar =getVar(means,cluster);//循环迭代while(ads(oldvar,newvar)>10)//结束条件,可修改{//1先计算新的k个质心for(int i =0; i < k; i++){
means=getMeans(cluster);}//2清空分号蔟的容器,待会才可以根据新的质心重新分配for(int i =0; i < k; i++){
cluster.clear();}//3根据新的质心,对于原来传入的所有数据重新分配for(int i =0; i < tuples.size(); i++){
label =clusterofTuple(means, tuples);
cluster.push_back(tuples);}//4最后输出for(int i =0; i < k; i++){
vector<Tuple> t = cluster;for(int j =0; j < t.size(); j++){
cout << t.attr1 << t.attr2 << endl;}}}}
vector<Tuple>input(vector<Tuple>&tuples){//数据输入,可改读入
Tuple tuple;
tuple.attr1=1;tuple.attr2=1;
tuple.attr1=1;tuple.attr2=2;
tuple.attr1=7;tuple.attr2=10;
tuples.push_back(tuple);
tuples.push_back(tuple);
tuples.push_back(tuple);return tuples;}intmain(){
vector<Tuple> tuples;input(tuples);Kmeans(tuples);system("pause");return0;}
页:
[1]