图像数据增强中的图形学理论 | 图形学表示之二维变换
Theoretical basis of computer graphics for image data augmentation本篇是第二篇, 介绍二维变换作者认为,图形学主要研究建模、模拟仿真,计算机视觉主要研究图像处理、图像理解,如图 31所示。
图 31 The difference between computer graphics and computer vision
3.1 向量的运算
3.1.1 点乘
Dot Product/inner product点乘结果是向量
A*B表示A在B方向上的投影,方向与A的夹角为锐角(≤90°)
3.1.2 叉乘
cross product叉乘的方向性
右手法则
判断点在三角形内
3.2 二维变换(2D transformations)
Representing transformations using matrices
3.2.1 缩放(Scale)
图 32 缩放
缩放变换的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+%5Ctext%7Bsx%7D
https://www.zhihu.com/equation?tex=y%5E%7B%27%7D+%3D+sy
缩放变换的矩阵表示:
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7Ds+%26+0+%5C%5C0+%26+s+%5C%5C%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D
图 33 Scale (Non-Uniform)
不同比例缩放的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+s_%7Bx%7Dx
https://www.zhihu.com/equation?tex=y%5E%7B%27%7D+%3D+s_%7By%7Dy
不同比例缩放变换的矩阵表示:
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7Ds_%7Bx%7D+%26+0+%5C%5C0+%26+s_%7By%7D+%5C%5C%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D
3.2.2 镜像翻转(Reflection)
Reflection
图 3 4 Horizontal reflection
水平翻转的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+-+x
水平翻转的矩阵表示:
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7D+-+1+%26+0+%5C%5C0+%26+1+%5C%5C%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D
3.2.3 裁剪与剪切(Shear)
图 35 Shear transformations
裁剪变换的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+x+%2B+ay
裁剪变换的矩阵表示:
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7D1+%26+a+%5C%5C0+%26+1+%5C%5C%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D
3.2.4 旋转(Rotate)
图 36 Rotate thet
裁剪变换的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+x%5Ccos%5Ctheta+-+y%5Csin%5Ctheta
https://www.zhihu.com/equation?tex=y%5E%7B%27%7D+%3D+x%5Csin%5Ctheta+%2B+y%5Ccos%5Ctheta
裁剪变换的矩阵表示:
https://www.zhihu.com/equation?tex=R_%7B%5Ctheta%7D+%3D+%5Cbegin%7Bbmatrix%7D%5Ccos%5Ctheta+%26+%7B-+sin%7D%5Ctheta+%5C%5C%5Csin%5Ctheta+%26+%5Ccos%5Ctheta+%5C%5C%5Cend%7Bbmatrix%7D
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7D%5Ccos%5Ctheta+%26+%7B-+sin%7D%5Ctheta+%5C%5C%5Csin%5Ctheta+%26+%5Ccos%5Ctheta+%5C%5C%5Cend%7Bbmatrix%7D%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D
3.2.5 平移(Translation)
图 37 Translation
平移变换的公式表示:
https://www.zhihu.com/equation?tex=x%5E%7B%27%7D+%3D+x+%2B+t_%7Bx%7D
https://www.zhihu.com/equation?tex=y%5E%7B%27%7D+%3D+y+%2B+t_%7By%7D
平移变换的矩阵形式表示为:
https://www.zhihu.com/equation?tex=%5Cbegin%7Bbmatrix%7Dx%5E%7B%27%7D+%5C%5Cy%5E%7B%27%7D+%5C%5C%5Cend%7Bbmatrix%7D+%3D+%5Cbegin%7Bbmatrix%7Dx+%5C%5Cy+%5C%5C%5Cend%7Bbmatrix%7D+%2B+%5Cbegin%7Bbmatrix%7Dt_%7Bx%7D+%5C%5Ct_%7By%7D+%5C%5C%5Cend%7Bbmatrix%7D
参考
刘欢;基于深度学习的发票图像文本检测与识别;华中科技大学;2019年
https://sites.cs.ucsb.edu/~lingqi/teaching/resources/GAMES101_Lecture_03.pdf
https://sites.cs.ucsb.edu/~lingqi/teaching/resources/GAMES101_Lecture_04.pdf
Fundamentals of Computer Graphics, Fourth Edition
M. Paschali, W. Simson, A. G. Roy, M. F. Naeem, R. Gbl, C. Wachinger, and N. Navab. Data augmentation with manifold exploring geometric transformations for increased performance and robustness. arXiv preprint arXiv:1901.04420, 2019.
本文使用 Zhihu On VSCode 创作并发布
页:
[1]