Carla框架分析(三)
Carla采用的是CS的架构,即Server端是在UE4当中,作为UE4的一个插件PluginClient端是C++客户端或者是Python客户端中间通过rpc框架进行通信,走的是TCP协议
首先来看一张很重要的图
image
这张图清晰明了的说明了Carla的整体框架,接下来我们一个一个分析
RPC框架
建议读者先要理解RPC框架才往后阅读
Carla所使用的是rpc框架是rpclib,可以在github上找到:地址
或者在Build/rpclib-src目录下
LibCarla
LibCarla是Carla的核心代码C++实现,提供给Server端和Client端使用,同时对rpclib进行了封装,具体目录在LibCarla\source\carla下,其中LibCarla\source\third-party则是Carla所使用的第三方库
我们可以在LibCarla\cmake目录中看到以下目录结构,说明Server端和Client端是分开构建的
image
Server端依赖的代码在Carla构建完之后会被安装到Unreal\CarlaUE4\Plugins\Carla\CarlaDependencies目录下Client端依赖的代码在Carla构建完之后会被安装到PythonAPI\carla\dependencies目录下
Server端
Server端的代码在Unreal/CarlaUE4/Plugins/Carla/Source/Carla目录下,其中Server/CarlaServer.cpp里包含了Carla对rpc::Server的一个封装
class ServerBinder{public:constexpr ServerBinder(const char *name, carla::rpc::Server &srv, bool sync) : _name(name), _server(srv), _sync(sync) {}template <typename FuncT>auto operator<<(FuncT func){ if (_sync) { _server.BindSync(_name, func); } else { _server.BindAsync(_name, func); } return func;}private:const char *_name;carla::rpc::Server &_server;bool _sync;};#define BIND_SYNC(name) auto name = ServerBinder(# name, Server, true)#define BIND_ASYNC(name)auto name = ServerBinder(# name, Server, false)// =============================================================================// -- Bind Actions -------------------------------------------------------------// =============================================================================void FCarlaServer::FPimpl::BindActions(){namespace cr = carla::rpc;namespace cg = carla::geom;/// Looks for a Traffic Manager running on portBIND_SYNC(is_traffic_manager_running) << (uint16_t port) ->R<bool>{ return (TrafficManagerInfo.find(port) != TrafficManagerInfo.end());};// ... 其余代码}
通过源码可以看到,BIND_SYNC和BIND_ASYNC两个宏实现了Server端函数调用的绑定,例如:is_traffic_manager_running函数
Client端(C++)
我们可以在LibCarla\source\carla\client\detail\Client.cpp中找到Client端的实现代码,不过如果你要编写的是C++的Client的话,你可以从PythonAPI\carla\dependencies目录下拿取安装好的
class Client::Pimpl {public: Pimpl(const std::string &host, uint16_t port, size_t worker_threads) : endpoint(host + ":" + std::to_string(port)), rpc_client(host, port), streaming_client(host) { rpc_client.set_timeout(5000u); streaming_client.AsyncRun( worker_threads > 0u ? worker_threads : std::thread::hardware_concurrency()); } template <typename ... Args> auto RawCall(const std::string &function, Args && ... args) { try { return rpc_client.call(function, std::forward<Args>(args) ...); } catch (const ::rpc::timeout &) { throw_exception(TimeoutException(endpoint, GetTimeout())); } } template <typename T, typename ... Args> auto CallAndWait(const std::string &function, Args && ... args) { auto object = RawCall(function, std::forward<Args>(args) ...); using R = typename carla::rpc::Response<T>; auto response = object.template as<R>(); if (response.HasError()) { throw_exception(std::runtime_error(response.GetError().What())); } return Get(response); } template <typename ... Args> void AsyncCall(const std::string &function, Args && ... args) { // Discard returned future. rpc_client.async_call(function, std::forward<Args>(args) ...); } time_duration GetTimeout() const { auto timeout = rpc_client.get_timeout(); DEBUG_ASSERT(timeout.has_value()); return time_duration::milliseconds(static_cast<size_t>(*timeout)); } const std::string endpoint; rpc::Client rpc_client; streaming::Client streaming_client;};Client::Client( const std::string &host, const uint16_t port, const size_t worker_threads) : _pimpl(std::make_unique<Pimpl>(host, port, worker_threads)) {}bool Client::IsTrafficManagerRunning(uint16_t port) const { return _pimpl->CallAndWait<bool>("is_traffic_manager_running", port);}
通过源码可以看到,Client端调用了Server端的函数is_traffic_manager_running
Client端(Python)
目录:PythonAPI\carla\source\libcarla,主要是通过boost::python来实现C++到Python的绑定
我们随便看一个文件,例如PythonAPI\carla\source\libcarla\Actor.cpp文件,具体的绑定用法需要读者自己去了解boost::python
image
页:
[1]