雪花算法对System.currentTimeMillis()优化真的有用么?
前面已经讲过了雪花算法,里面使用了System.currentTimeMillis()获取时间,有一种说法是认为System.currentTimeMillis()慢,是因为每次调用都会去跟系统打一次交道,在高并发情况下,大量并发的系统调用容易会影响性能(对它的调用甚至比new一个普通对象都要耗时,毕竟new产生的对象只是在Java内存中的堆中)。我们可以看到它调用的是native 方法:// 返回当前时间,以毫秒为单位。注意,虽然返回值的时间单位是毫秒,但值的粒度取决于底层操作系统,可能更大。例如,许多操作系统以数十毫秒为单位度量时间。
public static native long currentTimeMillis();
所以有人提议,用后台线程定时去更新时钟,并且是单例的,避免每次都与系统打交道,也避免了频繁的线程切换,这样或许可以提高效率。
这个优化成立么?
先上优化代码:
package snowflake;
import java.util.concurrent.Executors;
import java.util.concurrent.ScheduledExecutorService;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.atomic.AtomicLong;
public class SystemClock {
private final int period;
private final AtomicLong now;
private static final SystemClock INSTANCE = new SystemClock(1);
private SystemClock(int period) {
this.period = period;
now = new AtomicLong(System.currentTimeMillis());
scheduleClockUpdating();
}
private void scheduleClockUpdating() {
ScheduledExecutorService scheduleService = Executors.newSingleThreadScheduledExecutor((r) -> {
Thread thread = new Thread(r);
thread.setDaemon(true);
return thread;
});
scheduleService.scheduleAtFixedRate(() -> {
now.set(System.currentTimeMillis());
}, 0, period, TimeUnit.MILLISECONDS);
}
private long get() {
return now.get();
}
public static long now() {
return INSTANCE.get();
}
}
只需要用SystemClock.now()替换System.currentTimeMillis()即可。
雪花算法SnowFlake的代码也放在这里:
package snowflake;
public class SnowFlake {
// 数据中心(机房) id
private long datacenterId;
// 机器ID
private long workerId;
// 同一时间的序列
private long sequence;
public SnowFlake(long workerId, long datacenterId) {
this(workerId, datacenterId, 0);
}
public SnowFlake(long workerId, long datacenterId, long sequence) {
// 合法判断
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format(&#34;worker Id can&#39;t be greater than %d or less than 0&#34;, maxWorkerId));
}
if (datacenterId > maxDatacenterId || datacenterId < 0) {
throw new IllegalArgumentException(String.format(&#34;datacenter Id can&#39;t be greater than %d or less than 0&#34;, maxDatacenterId));
}
System.out.printf(&#34;worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d&#34;,
timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);
this.workerId = workerId;
this.datacenterId = datacenterId;
this.sequence = sequence;
}
// 开始时间戳(2021-10-16 22:03:32)
private long twepoch = 1634393012000L;
// 机房号,的ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
private long datacenterIdBits = 5L;
// 机器ID所占的位数 5个bit 最大:11111(2进制)--> 31(10进制)
private long workerIdBits = 5L;
// 5 bit最多只能有31个数字,就是说机器id最多只能是32以内
private long maxWorkerId = -1L ^ (-1L << workerIdBits);
// 5 bit最多只能有31个数字,机房id最多只能是32以内
private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);
// 同一时间的序列所占的位数 12个bit 111111111111 = 4095最多就是同一毫秒生成4096个
private long sequenceBits = 12L;
// workerId的偏移量
private long workerIdShift = sequenceBits;
// datacenterId的偏移量
private long datacenterIdShift = sequenceBits + workerIdBits;
// timestampLeft的偏移量
private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;
// 序列号掩码 4095 (0b111111111111=0xfff=4095)
// 用于序号的与运算,保证序号最大值在0-4095之间
private long sequenceMask = -1L ^ (-1L << sequenceBits);
// 最近一次时间戳
private long lastTimestamp = -1L;
// 获取机器ID
public long getWorkerId() {
return workerId;
}
// 获取机房ID
public long getDatacenterId() {
return datacenterId;
}
// 获取最新一次获取的时间戳
public long getLastTimestamp() {
return lastTimestamp;
}
// 获取下一个随机的ID
public synchronized long nextId() {
// 获取当前时间戳,单位毫秒
long timestamp = timeGen();
if (timestamp < lastTimestamp) {
System.err.printf(&#34;clock is moving backwards.Rejecting requests until %d.&#34;, lastTimestamp);
throw new RuntimeException(String.format(&#34;Clock moved backwards.Refusing to generate id for %d milliseconds&#34;,
lastTimestamp - timestamp));
}
// 去重
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
// sequence序列大于4095
if (sequence == 0) {
// 调用到下一个时间戳的方法
timestamp = tilNextMillis(lastTimestamp);
}
} else {
// 如果是当前时间的第一次获取,那么就置为0
sequence = 0;
}
// 记录上一次的时间戳
lastTimestamp = timestamp;
// 偏移计算
return ((timestamp - twepoch) << timestampLeftShift) |
(datacenterId << datacenterIdShift) |
(workerId << workerIdShift) |
sequence;
}
private long tilNextMillis(long lastTimestamp) {
// 获取最新时间戳
long timestamp = timeGen();
// 如果发现最新的时间戳小于或者等于序列号已经超4095的那个时间戳
while (timestamp <= lastTimestamp) {
// 不符合则继续
timestamp = timeGen();
}
return timestamp;
}
private long timeGen() {
return SystemClock.now();
// return System.currentTimeMillis();
}
public static void main(String[] args) {
SnowFlake worker = new SnowFlake(1, 1);
long timer = System.currentTimeMillis();
for (int i = 0; i < 10000000; i++) {
worker.nextId();
}
System.out.println(System.currentTimeMillis());
System.out.println(System.currentTimeMillis() - timer);
}
}
Windows:i5-4590 16G内存 4核 512固态
Mac: Mac pro 2020 512G固态 16G内存
Linux:deepin系统,虚拟机,160G磁盘,内存8G
单线程环境测试一下 System.currentTimeMillis():
平台/数据量10000100000010000000100000000mac5247244424416windows3249244824426linux(deepin)135598407626388单线程环境测试一下 SystemClock.now():
平台/数据量10000100000010000000100000000mac52299250124674windows56394238934389983linux(deepin)3361226445427639上面的单线程测试并没有体现出后台时钟线程处理的优势,反而在windows下,数据量大的时候,变得异常的慢,linux系统上,也并没有快,反而变慢了一点。
多线程测试代码:
public static void main(String[] args) throws InterruptedException {
int threadNum = 16;
CountDownLatch countDownLatch = new CountDownLatch(threadNum);
int num = 100000000 / threadNum;
long timer = System.currentTimeMillis();
thread(num, countDownLatch);
countDownLatch.await();
System.out.println(System.currentTimeMillis() - timer);
}
public static void thread(int num, CountDownLatch countDownLatch) {
List<Thread> threadList = new ArrayList<>();
for (int i = 0; i < countDownLatch.getCount(); i++) {
Thread cur = new Thread(new Runnable() {
@Override
public void run() {
SnowFlake worker = new SnowFlake(1, 1);
for (int i = 0; i < num; i++) {
worker.nextId();
}
countDownLatch.countDown();
}
});
threadList.add(cur);
}
for (Thread t : threadList) {
t.start();
}
}
下面我们用不同线程数来测试 100000000(一亿) 数据量 System.currentTimeMillis():
平台/线程24816mac14373613234103247windows12408686267917114linux20753190551891919602用不同线程数来测试 100000000(一亿) 数据量 SystemClock.now():
平台/线程24816mac12319627536913746windows194763110442153960174974linux26516253132549725544在多线程的情况下,我们可以看到mac上没有什么太大变化,随着线程数增加,速度还变快了,直到超过 8 的时候,但是windows上明显变慢了,测试的时候我都开始刷起了小视频,才跑出来结果。而且这个数据和处理器的核心也是相关的,当windows的线程数超过了 4 之后,就变慢了,原因是我的机器只有四核,超过了就会发生很多上下文切换的情况。
linux上由于虚拟机,核数增加的时候,并无太多作用,但是时间对比于直接调用 System.currentTimeMillis()其实是变慢的。
但是还有个问题,到底不同方法调用,时间重复的概率哪一个大呢?
static AtomicLong atomicLong = new AtomicLong(0);
private long timeGen() {
atomicLong.incrementAndGet();
// return SystemClock.now();
return System.currentTimeMillis();
}
下面是1千万id,八个线程,测出来调用timeGen()的次数,也就是可以看出时间冲突的次数:
平台/方法SystemClock.now()System.currentTimeMillis()mac2306720912896314windows70546003935164476linux116555235281422626可以看出确实SystemClock.now()自己维护时间,获取的时间相同的可能性更大,会触发更多次数的重复调用,冲突次数变多,这个是不利因素!还有一个残酷的事实,那就是自己定义的后台时间刷新,获取的时间不是那么的准确。在linux中的这个差距就更大了,时间冲突次数太多了。
结果
实际测试下来,并没有发现SystemClock.now()能够优化很大的效率,反而会由于竞争,获取时间冲突的可能性更大。JDK开发人员真的不傻,他们应该也经过了很长时间的测试,比我们自己的测试靠谱得多,因此,个人观点,最终证明这个优化并不是那么的可靠。
不要轻易相信某一个结论,如果有疑问,请一定做做实验,或者找足够权威的说法。
- END -
页:
[1]